

Radiation Dose and Risk Assessment in Blood Clam (Anadara ganosa) from the Gulf of Thailand using ERICA Tool

Varalee Kongcharoen^{*} Chitsanupong Khrautongkieo Natchakan Nakkaew Rungsak Suwanklang and Yutthana Tumnoi

Regulatory Technical Support Division, Office of Atoms for Peace, Bangkok, 10900, Thailand

Introduction

- After the Fukushima-Daiichi accident, a focus has been put into the measurement of Cs-137 in local marine species and seawater in Thailand for radiation doses assessment.
- For the first time after the accident, Blood clam (Anadara ganosa), seawater, and sediment were collected from the Gulf of Thailand for radiation dose and risk assessment.

Materials and Methods

Blood clam (Anadara ganosa), seawater, and sediment were collected from 2 farming areas (Samut Songkhram and Samut Prakan provinces) in Gulf of Thailand in dry and rainy seasons during 2021-2022

> The purpose of this study is to estimate total radiation doses received by Blood clam (Anadara ganosa) from Ra-226, Th-232, and Cs-137 using ERICA Tool, and to further strengthen the national and regional marine radioactivity databases.

Results and Discussion

- Cs-137 ranged from 0.47 to 1.18 mBq/l in the seawater, from 0.15 to 0.96 Bq/kg in the sediment, and from 0.03 to 0.05 Bq/kg in the clam. The highest amount was found in the sediment with a mean of 0.58±0.29 Bq/kg
- Ra-226 ranged from 0.95 to 1.40 Bq/l in the seawater, from 42.52 to 63.16 Bq/kg in the sediment, and from 2.11 to 3.43 Bq/kg in the clam. The highest level was found in the sediment with an average of 53.42±6.57 Bq/kg
- Figure Th-232 ranged from 0.80 to 1.08 Bq/l in the seawater, from 50.28 to 68.04 Bq/kg in the sediment, and from

Sample preparation and measurement

Sediment

micrometer sieve

plastic container

HPGe gamma spectrometry

Blood Clam (Anadara ganosa)

0.26 to 0.83 Bq/kg in the clam. The highest value was found in shellfish with an average of 59.75±6.06 Bq/kg

Dose Rates (uGy/hr) between the natural (Ra-226 and Th-232) and the artificial radionuclides (Cs-137)

Total Dose Rate (uGy/hr)

Total Dose from Natural Total Dose from Human

External Dose Rate (uGy/hr)

- No seasonal variation observed in all radionuclides and environmental matrices studied
- ➢ Ra-226 is the main radiation dose contributor to the Blood clam

More than 99% of the total dose rates in the Blood clam is from the natural radionuclides

 \blacktriangleright Total radiation doses reported in this present study are well below the guideline value of 10 μ Gy/h

contributor to radiation doses received by the studied species.

- \succ The total radiation doses reported below the guideline value of 10 μ Gy/h implying that those radionuclides do not pose any radiological hazards to the clam of interest
- \blacktriangleright The obtained data will be used to strengthen the national and regional marine radioactivity databases and to develop relevant guideline/plan for marine environmental radiation protection.

Acknowledgment

Department of Biology, Faculty of Science, Silpakorn University

Thailand Science Research and Innovation